Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata.
نویسندگان
چکیده
Thin, mechanically compliant coatings commonly serve as substrata for adherent cells in cell biology and biophysics studies, biological engineering applications, and biomedical device design. The deformation of such a coating at the cell-substratum interface defines the link between cellular traction, substratum stiffness, and the chemomechanical feedback mechanisms responsible for cellular mechanosensitivity. Here we apply elasticity theory to investigate how this deformation is affected by the finite thickness of such a cell substratum. The model idealizes a cellular adhesion site (e.g., a focal adhesion) as a circular area of uniform tangential traction, and compares the deformation of a compliant semi-infinite material to that of a coating of the same material supported by a rigid base. Two parameters are identified and considered: center displacement (as a measure of adhesion site displacement) and normal strain gradient (as a measure of adhesion site distortion). The attenuation of these parameters provides two measures for the influence of a finite coating thickness and underlying rigid base on cell-mediated deformation of the compliant substratum. A dimensionless term in the resulting solutions connects the coating thickness to the characteristic size of the adhesion sites. This relation, and calculations of the minimum thickness at which the rigid base is practically undetectable by an adherent cell, are supported by existing experimental literature and our observations of the projected area of fibroblasts adhered to polyacrylamide hydrogel coatings with various thicknesses atop relatively rigid glass. The model thus provides a tool for estimating the effective stiffness sensed by a cell attached to a compliant coating. We also identify and consider conceptualizations of critical thickness, or minimum suitable thickness for an application, which depend on both the frame of reference and the cell behavior of interest. The appropriate usage of different definitions resolves the disparity in values reported in the literature. Finally, the distinction between adhesion site displacement and distortion noted in this model could be useful in designing substrata to elucidate the controlling mechanisms of cellular mechanosensing.
منابع مشابه
Modeling and simulation of chemomechanics at the cell-matrix interface.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interac...
متن کاملA numerical analysis of effect of segmental lining joints on tunnel support internal forces under seismic loading
During an earthquake, the better performance of segmental tunnel lining, compared to the continuous in-cast concrete lining, is generally related to the joints between segments. In order to better understand the influence of the segment joints, their effect on the internal forces induced in tunnel lining simultaneously with the effects of the other influential parameters should be considered. I...
متن کاملSpectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory
In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...
متن کاملFree Vibration of Functionally Graded Cylindrical Shell Panel With and Without a Cutout
The free vibration analysis of the functionally graded cylindrical shell panels with and without cutout is carried out using the finite element method based on a higher-order shear deformation theory. A higher-order theory is used to properly account for transverse shear deformation. An eight noded degenerated isoparametric shell element with nine degrees of freedom at each node is considered....
متن کاملCalculation and Analysis of Groove Elastic Support’s Radial Stiffness (RESEARCH NOTE)
In this paper, an analytical formula to calculate the radial stiffness of groove elastic support is presented. The influence of structure parameters on radial stiffness and homogeneity of radial stiffness is investigated as well. The accuracy and calculating speed of the analysis formula are compared to that of finite element method (FEM). Findings are as following: The calculating speed of ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 78 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2008